Surface Immobilization of Human Arginase-1 with an Engineered Ice Nucleation Protein Display System in E. coli

نویسندگان

  • Zhen Zhang
  • Rongxin Tang
  • Lu Bian
  • Meng Mei
  • Chunhua Li
  • Xiangdong Ma
  • Li Yi
  • Lixin Ma
چکیده

Ice nucleation protein (INP) is frequently used as a surface anchor for protein display in gram-negative bacteria. Here, MalE and TorA signal peptides, and three charged polypeptides, 6×Lys, 6×Glu and 6×Asp, were anchored to the N-terminus of truncated INP (InaK-N) to improve its surface display efficiency for human Arginase1 (ARG1). Our results indicated that the TorA signal peptide increased the surface translocation of non-protein fused InaK-N and human ARG1 fused InaK-N (InaK-N/ARG1) by 80.7% and 122.4%, respectively. Comparably, the MalE signal peptide decreased the display efficiencies of both the non-protein fused InaK-N and InaK-N/ARG1. Our results also suggested that the 6×Lys polypeptide significantly increased the surface display efficiency of K6-InaK-N/ARG1 by almost 2-fold, while also practically abolishing the surface translocation of non-protein fused InaK-N, indicating the interesting roles of charged polypeptides in bacteria surface display systems. Cell surface-immobilized K6-InaK-N/ARG1 presented an arginase activity of 10.7 U/OD600 under the optimized conditions of 40°C, pH 10.0 and 1 mM Mn2+, which could convert more than 95% of L-Arginine (L-Arg) to L-Ornithine (L-Orn) in 16 hours. The engineered InaK-Ns expanded the INP surface display system, which aided in the surface immobilization of human ARG1 in E. coli cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell surface display of human immunodeficiency virus type 1 gp120 on Escherichia coli by using ice nucleation protein.

A new system designed for cell surface display of recombinant proteins on Escherichia coli has been evaluated for expression of eukaryotic viral proteins. Human immunodeficiency virus type 1 (HIV-1) gp120 was fused to the C terminus of ice nucleation protein (INP), an outer membrane protein of Pseudomonas syringae. Western blotting, immunofluorescence microscopy, fluorescence-activated cell-sor...

متن کامل

Enhanced Bioadsorption of Cadmium and Nickel by E. coli Displaying A Metal Binding Motif Using CS3 Fimbriae

Display of peptides on the surface of bacteria offers many new and exciting applications in biotechnology. Fimbriae is a good candidate for epitope display on the surface of bacteria. The potential of CS3 fimbriae of enterotoxigenic E. coli as a display system has been investigated. A novel cell surface display system with metal binding property was developed by using CS3 fimbriae. Short metal ...

متن کامل

Molecular Characterization of an Ice Nucleation Protein Variant (InaQ) from Pseudomonas syringae and the Analysis of Its Transmembrane Transport Activity in Escherichia coli

The ice nucleation protein (INP) of Pseudomonas syringae has gained scientific interest not only because of its pathogenicity of foliar necroses but also for its wide range of potential applications, such as in snow making, frozen food preparation, and surface-display system development. However, studies on the transport activity of INP remain lacking. In the present study, a newly identified I...

متن کامل

Specific adhesion to cellulose and hydrolysis of organophosphate nerve agents by a genetically engineered Escherichia coli strain with a surface-expressed cellulose-binding domain and organophosphorus hydrolase.

A genetically engineered Escherichia coli cell expressing both organophosphorus hydrolase (OPH) and a cellulose-binding domain (CBD) on the cell surface was constructed, enabling the simultaneous hydrolysis of organophosphate nerve agents and immobilization via specific adsorption to cellulose. OPH was displayed on the cell surface by use of the truncated ice nucleation protein (INPNC) fusion s...

متن کامل

Construction of Hybrid Gene of Hepatitis B Surface Antigen Carrying Heat-Stable Enterotoxin of Escherichia coli and Its Expression in Mammalian Cell Line

Hepatitis B surface antigen is the first genetically engineered vaccine licensed for human use. Various strategies have been proposed to obtain a vaccine that would bypass the need for injection. In this study, a non-toxic portion of heat-stable enterotoxin of Escherichia coli that is capable of adhering to epithelial cells was inserted at amino acid position 112 of hepatitis surface antigen. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016